
Generosity and Gluttony in GEMS:

Grid Enabled Molecular Simulations

J. M. Wozniak, P. Brenner, D. Thain, A. Striegel, J. A. Izaguirre

Dept. of Computer Science & Engineering

University of Notre Dame

Notre Dame, IN 46556 USA

{ jwozniak, pbrenne1, dthain, striegel, izaguirr } @ nd.edu

Abstract

Biomolecular simulations produce more output

data than can be managed effectively by traditional

computing systems. Researchers need distributed

systems that allow the pooling of resources, the shar-

ing of simulation data, and the reliable publication

of both tentative and final results. To address this

need, we have designed GEMS, a system that en-

ables biomolecular researchers to store, search, and

share large scale simulation data. The primary de-

sign problem is striking a balance between generos-

ity and gluttony. On one hand, storage providers

wish to be generous and share resources with their

collaborators. On the other hand, an unchecked

data producer can be gluttonous and easily replicate

data unnecessarily until it fills all available space.

To balance generosity and gluttony, GEMS allows

both storage providers and data producers to state

and enforce policies on the consumption of storage

and the replication of data. By taking advantage of

known properties of simulation data, the system is

able to distinguish between high value final results

that must be preserved and low value intermediate

results that can be deleted and regenerated if nec-

essary. We have built a prototype of GEMS on a

cluster of workstations and demonstrate its ability

to store new data, to replicate within policy limits,

and to recover from failures.

1 Introduction

For a large number of scientific disciplines, grid
computing offers the capability for inexpensive com-

puting and storage on scales previously reserved for
the domain of supercomputing. Hence, researchers
involved in simulation-driven scientific studies such
as chemistry, physics, and biology have been nat-
urally drawn to the promise of cheap, large scale
computing. A common characteristic for simula-
tions in these disciplines is the ability to generate
large amounts of data with complex relationships.

Producers of such large and complex data need
system support for managing their experimental
work. A single user of PROTOMOL can generate
so many variations on the same simulation that a
database-like index is needed to simply keep track
of the work already accomplished. Since the to-
tal amount of data generated can easily exceed the
storage available in any single device, researchers
need a system that can be expanded or reconfigured
while running. Allied researchers often explore sim-
ulations in related areas and would like to be able
to index and share results with each other. Many
simulation modes are iterative; computational work
can be saved if intermediate outputs of older sim-
ulations can be recovered and re-used. Because of
the high value of some simulations and the potential
for data loss in any computing environment, users
would like to replicate their data both in the local
area for performance and across the wide area as
insurance against disaster.

To meet the data demands of researchers per-
forming biomolecular simulations with PROTO-
MOL, we introduce the GEMS toolkit: Grid En-
abled Molecular Simulations. GEMS is a wide area
distributed system for managing the storage, search-

ing, and sharing needs of collaborating researchers.
The primary design and engineering problem of
GEMS is striking a balance between the generosity

1

of storage providers and the gluttony of data pro-
ducers. On one hand, storage owners have many
motivations to be generous and share their resources
with collaborators. On the other hand, data owners
have many competing motivations to be gluttonous
and fill all available storage, which would poorly uti-
lize the system and impede progress in the scientific
problem at hand.

Consider these forms of generosity in a dis-
tributed data system. Independent producers of
data may wish to share archived, high value simula-
tion results with others to disseminate their scien-
tific results. Collaborating scientists may be willing
to share unused local storage space with each other
for scratch space or distributed backups. Of course,
generosity has its limits. Resource owners may be
willing to allow unused space to be shared, but will
demand it back if their needs increase. Few resource
owners will wish to share with the world at large:
most will want to share only with a well-defined set
of collaborators.

If we allow storage owners to express generosity,
we must also be prepared for data producers to en-
gage in gluttony. When it is easy to replicate high
value data in order to prevent it from loss, we must
expect that all users will replicate widely, thus filling
up all available storage very quickly. Once storage
is filled, we are presented with some difficult ques-
tions. In order to make space for new data, what
items must be discarded? The users of a system
must have some method of expressing which items
have high value and which items do not.

GEMS allows users to strike a balance between
generosity and gluttony, thus ensuring the acces-
sibility, performance, and survivability of data.
To accomplish this, GEMS allows both storage
providers and data owners to exercise control over
system policies. Each owner of a storage device sets
a policy dictating who may use it and how much
space may be consumed. Likewise, each data owner
is able to dictate the location and replication factor
of data placed into the system.

In this paper, we describe the design and archi-
tecture of GEMS. Each component of the system
includes a strong policy component that defends the
interests of its owner. A prototype of GEMS is cur-
rently operating at the University of Notre Dame.
Through an experimental study, we demonstrate
how GEMS is able to deal with changing constraints
in a dynamic system. This discussion yields several
insights into the behavior of a distributed replica

Figure 1. Overview of GEMS Architecture

storage system.

2 GEMS Architecture

Figure 1 shows the major components of the
GEMS architecture that include storage servers,
catalog servers, and database servers. The GEMS
process begins when the user submits data for stor-
age. With each storage placement, the user includes
metadata for both the file itself and indexing in the
database. In turn, the database server determines
where to place the data based on resource discovery
information from the catalog server. Storage servers
are required to report their presence to a local cat-
alog server for discovery.

Functionality provided by GEMS can be catego-
rized into fault tolerance support through replica-
tion, dependent computing, and virtualized data.
First, the primary function of GEMS is to provide
appropriate replication of data placed onto the grid.
While one can, with reasonable reliability, replicate
data on storage entities owned by the user, no guar-
antee is provided when the storage of other groups
is used. GEMS emphasizes gluttonous replication
followed by larger area storage in order to toler-
ate multiple modes of failures. The user needs only
to specify the requested redundancy levels leaving
GEMS to manage how the data is placed and repli-
cated.

Similar to public archival, GEMS offers the abil-
ity to conduct dependent computing. For instance,
suppose that a given user wishes to conduct a new
algorithm for protein docking from a previous set
of runs on a remote site. Rather than copying
all files locally, new computation is submitted re-
motely with the new output results owned by the

2

user. Replication of the resulting new data is still
the responsibility of the GEMS software.

Finally, GEMS expands upon the virtual data
concept of Chimera [10] when offering public
archival functionality. Since the majority of the
simulations will create massive output files, it may
be less costly to dynamically recompute requested
data rather than storing multiple copies of the com-
plete results. Hence, data is virtualized in that
it may or may not exist for immediate consump-
tion. Since GEMS is tuned toward certain explo-
rations in molecular dynamics and protein confor-
mations, GEMS can take advantage of the deter-
ministic nature of many biomolecular simulations
to provide auto-regeneration of missing points with-
out re-running the entire simulation. A future pa-
per will discuss GEMS’ ability to catalog the struc-
ture of deterministic simulations, as well as more
complex structures created by protein conformation
analysis.

In short, GEMS can use a small amount of knowl-
edge of the scientific value of the data to help solve
problems created by the distributed, shared na-
ture of the storage system. The fact that input
files are very important and very small allows glut-
tonous users to replicate heavily and benefit from
the system. The fact that output files are large but
recomputable is used to protect generous storage
providers from being exploited unnecessarily.

3 The GEMS Prototype

Figure 2 shows a conceptual diagram of the
GEMS toolset and its interaction with existing re-
sources and grid management tools.

We have constructed a prototype implementation
of GEMS using the following tools. The storage
server used is the Chirp [22] personal file server.
Each Chirp server periodically sends a message with
its status and available space via UDP to a catalog
server. The catalog server makes the state of a set
of storage servers available via HTTP in the form
of XML or Condor’s ClassAds [15]. The database
server, called GEMSd, is a custom Java server that
accepts client connections and stores the state and
location of each file in a PostgreSQL database. A
variety of client tools allow users to insert, use, and
query the system for data.

SQL GEMSd

GEMSmatch GEMSput

GEMSrun

Catalog

Compute

Chirp Chirp Chirp Chirp

St
or

ag
e

C
li

en
t

GEMSrpr

Se
rv

er
s

Figure 2. GEMS Toolset Framework.

3.1 Client Tools

Users are given client tools to perform three ba-
sic operations: GEMSput, GEMSmatch, and GEM-

Srun.

GEMSput allows the user to specify a completed
simulation along with its input and output data
files and appropriate metadata. GEMSmatch al-
lows the user to locate existing records that match
criteria specified in XML. GEMSmatch contacts the
database server, performs a query, and then returns
a list of locations where the matching data may be
accessed directly on a storage server. GEMSrun
plugs together GEMS, PROTOMOL, and a batch
system in an easy-to-use interface. This tool ex-
tracts an existing output set from GEMS, uses it as
input to a PROTOMOL job, and then runs it in a
batch system.

In addition, users can also submit more com-
plicated requests utilizing all three operations de-
scribed above through the use of a Result Pro-
duction Request (rpr) via the GEMSrpr client. If
the desired simulation has already been produced,
GEMSrpr will detect this by using GEMSmatch to
return the location of the outputs. If not, GEMSrun
is used to dispatch a job to a batch system and pro-
duce the desired data. The outputs will be stored

3

in GEMS with GEMSput and returned to the user
in the same way. Thus, GEMSrpr does not contact
the server directly, but uses our other software.

3.2 Database Server

The database server is the hub of GEMS. It is
responsible for serving users, managing metadata,
and periodically scanning storage servers for prob-
lems.

Each PROTOMOL computation has a record in
the database indicating how the computation could
be redone. This includes metadata about the exe-
cutable, parameters, and input and output files. In
addition, each file has metadata describing its ini-
tial location, size, desired replication level, and sites
where it may be found. This information is used by
the client when retrieving data for another GEMS-
match or GEMSrun operation and also by the server
when checking the status of storage servers.

The database server is responsible for maintain-
ing the replication count of the data that it tracks.
Periodically, the database server scans its database
and then probes the necessary storage servers to
make sure that the expected files are still there.
The files might be gone for several reasons: the
storage server may have failed, the resource owner
might have evicted the files, or the network may be
temporarily partitioned. Regardless, the database
server views all these failure modes as a loss of data.

Upon discovering the loss of a replica, the
database server will search for a surviving copy of
that data. If none is found, then permanent data
loss has occurred, and this event is logged. If a
replica is available, the database server consults the
catalog to find available space, and then creates a
new replica. By default, the database server handles
short term loss quite aggressively. The temporary
loss of a storage server due to a reboot or network
failure results in rapid replication of the lost data.
A data owner may throttle this behavior by requir-
ing a configurable amount of time to pass before a
perceived failure results in a replication.

Because of the possibility of over-replication, the
database server is also responsible for the opposite
task of cleaning up unwanted data. Periodically,
the database server scans known storage servers
for data that is present but unmentioned in the
database. We call this task auditing. If it repre-
sents data already replicated and that puts the user
over the replication threshhold, it is deleted. Note

that GEMS uses a private directory on each storage
server; files unrelated to GEMS will not be removed
during auditing.

GEMS incorporates disk utilization management
as a fundamental feature. The GEMS server is con-
figured at startup with the permitted storage size.
Although replication counts are requested per file
by GEMSput, the GEMSd server may allocate less
space if disk utilization runs too high. Statistics
regarding current utilization are obtained by com-
paring disk utilization information in the Chirp cat-
alog, as well as information in the database set by
the Replicator and Auditor. The replication and
garbage collection components consult the system
utilization state before making changes to the sys-
tem, and make adjustments to a file’s replication
count as they progress.

3.3 Distributed Access Control

A distributed storage system relies heavily on the
contributions of storage space and access control of-
fered by the individual servers. The storage servers
are expected to respond to requests for storage, re-
trieval, and replica management, as well as enforce
access control as specified by the central server and
the storage owner. Within this framework, there
are several options. If the data is very public, each
server could provide read access to all its data, with
write access and replica control strictly managed by
the central authority. Extremely sensitive data sets
could be managed exclusively by the central server:
the storage servers would only listen to the central
authority, so all client data transfers would have to
hop through the central machine. While the first
approach offers more access than many researchers
would like, the second is obtuse and would exhaust
the central machine.

In GEMS, we chose to delegate control authority
across the Chirp servers, managed by the GEMSd
server. This supports our objective of protect-
ing storage providers, while allowing for the auto-
matic replica and metadata management provided
by GEMSd. Storage providers advertise storage
space to the system through the Chirp Catalog,
which is read by GEMSd as discussed above. As an
additional step, the server must allow GEMSd ad-
ministrative access to a /GEMS directory, otherwise
the server will be ignored. This allows GEMSd to
allocate storage for new data and maintain appro-
priate permissions on the filesets during replication.

4

Catalog

 GEMSd

Chirp

4
3

SQL

2

5

D
ir

ec
t T

ra
ns

fe
r

/GEMS/data01/.../sim01

/GEMS/data02

/GEMS {hostname:gems.nd.edu [rwa]}

 globus:/O=nd/CN=Monk [r]}
{globus:/O=nd/CN=Ted [rw]}

{globus:/O=nd/CN=Ted [r],

data01 {globus:/O=nd/CN=Ted [r],
 globus:/O=nd/CN=Monk [r]}

data02 {globus:/O=nd/CN=Ted [rw]}
In Progress!

GEMSput()data02

C
li

en
t

Se
rv

er
s

St
or

ag
e

1

Figure 3. Access Control Example
This example shows how GEMS protects data within the constraints of all the participants. 1. The owner

of a file server gives the GEMSd access to administer a directory. 2. The owner of data02 states the ACL

to be used for protecting the new dataset. 3. GEMSd creates a new directory on the file server and sets the

ACL for that dataset. 4. Direct data transfer to the file server begins. 5. As shown for data01, existing data

is directly readable by certain users.

In this system, the Chirp ACL (Access Con-
trol List) for a given fileset is specified at the time
GEMSput is used. GEMS uses the Chirp form
method:name for authentication, which allows a
variety of authentication methods including Unix,
hostname, Kerberos, and Globus. A GEMSput user
is authenticated by a rendezvous protocol with a
trusted Chirp server. Upon success, the ACL is
stored with the simulation metadata. Then GEMSd
creates a writeable directory on a satisfactory Chirp
server for the client, and the data is uploaded from
the client. When the client notifies GEMSd that
the transfer is complete, GEMSd locks out the
write permissions on the directory, activates the
entry in the metadatabase, and sets read permis-
sions for the appropriate users. File replication for
this fileset is performed with the constraint that the
Chirp servers in question accept the authentication
method given by the corresponding ACL.

4 Application: Molecular Dynamics

Simulation

Molecular dynamics describes a molecular system
as a function of time based on integration of equa-

tions of motion and interacting forces. The running
time of these simulations are typically dominated
by the force calculation between the various atoms
in the simulation. PROTOMOL is a generic, ob-
ject oriented molecular dynamics simulator [?], that
we utilize to assist in the detection of new confor-
mations of proteins1. Finding new conformations
helps in understanding the functions of proteins in
living tissue and aids in current biochemical areas
of research such as pharmaceuticals.

An example PROTOMOL conformational sam-
pling computation proceeds as follows. First, the re-
searcher retrieves appropriate positional, relational,
and physical parameter files such as a PDB position
file (from the national Protein Data Bank reposi-
tory), a CHARMM force parameter file, and a PSF
topology file. The researcher will take the initial
conformation in a selected environment, apply a
random variation, and allow molecular dynamics to
proceed. If the new state of the system meets cer-
tain physical properties, then it may be declared
a new conformation. The new set of conformation

1A conformation is an energetically minimal geometric

configuration that is significantly different from other known

conformations.

5

ensembles can then be further analyzed in protein
docking software such as FlexE or AutoDock.

As the simulation runs, large intermediate files
are created regarding the state of the system in ad-
dition to a final set of unique conformation candi-
dates. Researchers are interested in not only the
final result but also intermediate results as the sim-
ulation progresses in a deterministic manner. From
the operation of PROTOMOL and other biomolec-
ular simulations, we note several important charac-
teristics that GEMS addresses:

• Auto-regeneration of data: By virtue of the
deterministic state of the simulations, missing
data points can be regenerated without rerun-
ning the entire simulation. For example, data
point DPN+1 can be regenerated by running
the original executable using the program in-
puts and DPN . Unlike checkpointing, special
libraries are not employed for this functional-
ity and only a subset of the simulation state is
necessary for these intermediate states.

• Multiple priority levels: Since data can be au-
tomatically regenerated by the system, it be-
comes possible to offer different levels of re-
dundancy between the different types of data.
While critical components such as the original
executable and inputs must be preserved, the
final output and intermediate data points can
be stored at a lower redundancy level. In ad-
dition, data that exists primarily for archival
use may be further reduced in redundancy pro-
vided that the initial conditions for creation are
not lost.

• Search for existing data: The ability to store
massive amounts of data becomes useless if the
data cannot be retrieved in a meaningful fash-
ion. In order to enable evolving research, it
must be possible to employ both search queries
based on well-defined data structures as well as
user-customized fields.

The most notable feature of GEMS is that it al-
lows to user to specify critical data files through
metadata and hence prioritize the target redun-
dancy levels for the system. Rather than viewing
data blocks as simply striving towards a uniform re-
dundancy level, the importance of the data can be
taken into account when reacting to inevitable fail-
ures. The gluttonous nature of GEMS will attempt
to maximize redundancy levels of critical data but

yet the generosity aspect will yield space as nec-
essary provided that minimum redundancy is pre-
served on critical data.

Finally, the incorporation of XML metadata for
both placement and searching allows GEMS to build
on existing work and arbitrarily extend search so-
phistication as necessary. A critical aspect in the de-
velopment of PROTOMOL is the ability to improve
simulation speed. Hence, it would often be neces-
sary to insert arbitrary tags to denote algorithm ap-
proaches and internal notes. In addition, GEMS is
also capable of including already well-defined char-
acteristics of results such as BioSimGrid [21].

5 Experiments

In this section, we demonstrate the usefulness of
GEMS on actual simulation data. GEMSd relies
upon several other resources that are used for data
and metadata storage, as well as compute hosts. In
our tests, we used 20 storage servers and a dual-
processor GEMSd and metadatabase server, all of
which were running Linux. The server used Post-
GreSQL 7.4.6 [14] for the metadatabase.

We present a 12 hour experiment during which
all machines remained available to other non-GEMS
users. We chart the storage space utilized as re-
ported by GEMS along with the actual physical
storage utilized. An important practical aspect of
this test is that storage availability fluctuates not
only as a function of the storage utilized by GEMS
but also the storage utilized by all other non-GEMS
users.

By monitoring global system storage knowledge,
GEMS can make adaptive replication count deci-
sions. In this test, we assume all stored data is
output data and is subject to tight replication lim-
its. The Replicator and Auditor components then
react appropriately, replicating if available storage
permits and deleting as storage becomes limited.

Figure 4 presents the system’s functionality dur-
ing this test with key events labelled. At the out-
set the distributed storage pool contains no GEMS
data and the Replicator component of GEMS is not
running. To start, multiple GEMSputs are exe-
cuted. For simplicity, in each GEMSput the num-
ber of replications requested for each file was set to
3. Once the GEMSput operations completed, we
turned on the Replicator and it attempted to pro-
vide all replications requested. Near hour 4, GEMS
runs out of space to create additional replicas, so the

6

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

S
to

ra
ge

 (
G

B
)

Time (hours)

avg replicas: 1

avg replicas: 2

avg replicas: 3
dataset limit: 40 GB

one disk lost

five disks lost

ten disks lost

data inserted

replication
in progress

replication
complete

perceived storage used
actual storage used

Figure 4. Example of Fault Tolerance over Time
This figure shows the first twelve hours in the lifetime of a 14 GB dataset entered into GEMS for

safekeeping. Out of a storage cluster of 20 disks, the system policy has allotted GEMS 40 GB to store this

dataset. Three failures are induced, but GEMS detects and re-replicates lost data. The discrepancy between

actual and perceived storage indicates the time needed to discover failures via file scanning.

usage level flattens out. The Auditor and Replica-
tor then iteratively adjust the storage to make sure
that no record has 3 replicas while another record
has not been given the 2 replicas it is permitted.

Once replication levelled off, we deleted the
GEMS files from an increasing number of clients
to simulate owners who have decided to temporar-
ily evict GEMS from their system or experienced a
hardware failure and replaced it with equivalent but
empty storage device. Interestingly, for the smaller
storage losses GEMS records little to no deviation
in total capacity. The Replicator continues from
its current point in the metadata and restores the
missing copies as it discovers them.

Generally speaking, this test shows that GEMS
can greedily consume the amount of resources that
it has been granted, then safely protect storage re-
sources from being overused. In case of disk failure,
or if a storage donor suddenly leaves the system,
GEMS will recover by recopying the backup repli-
cas.

6 Related Work

Figure 5 shows how GEMS relates to other
work in distributed storage. It lies at the mid-
dle of two axes in design: database/filesystem and
centralized/peer-to-peer.

To end users, GEMS is something like a database
and also something like a filesystem. It provides

a database-like abstraction for inserting, indexing,
and managing replicated data. But, the objects
stored are filesystem components and can be ac-
cessed through an ordinary filesystem interface.
This duality allows GEMS to take advantage of as-
pects of both models. The database aspect allows
GEMS to easily handle issues of replication, fault
tolerance, and consistency, while the filesystem as-
pect allows for native interaction with existing tools
and applications.

In the distribution of control, GEMS is a mix of
centralized and peer-to-peer. Each storage server in
GEMS is independent and has its own policies that
control who is allowed to consume space. Every re-
source owner may contribute as little or as much
to the system as they like while retaining the capa-
bility to retract storage at any time. However, the
GEMS catalogs and databases used to locate exist-
ing space and available data are shared among many
users. In a typical configuration, many users would
share a small number of catalogs and databases, but
conceivably each could have their own.

Other distributed storage systems inhabit other
positions in this coordinate system, many at the ex-
tremes of one axis or the other. We begin in the up-
per right hand corner and proceed clockwise around
the graph. For example, a conventional distributed
filesystem such as NFS [18] has completely central-
ized administrative control. Over time, research
in distributed filesystems has slowly pushed the
boundaries of control structures outward. AFS [11]

7

Gnutella

da
ta

ba
se

fil
es

ys
te

m

FARSITE

OceanStore

peer−to−peer

GEMS

SRB

SHORE

centralized control

Postgres

Chord PAST

Lustre

PVFS

AFS
NFS

ExNode
Google

Chimera

BioSimGrid

Giggle

Figure 5. Related Work

permits clients to exercise more control over cache
consistency. PVFS [7] and Lustre [20] spread data
and metadata across multiple hosts in a cluster to
achieve high throughput and expandable capacity.
However, these systems all retain central adminis-
trative control. In contrast, each storage server in
GEMS is completely independent.

Some systems have explored complete inde-
pendence. FARSITE [1], OceanStore [12], and
PAST [17] all provide a (nearly) unmodified filesys-
tem interface on top of a set of completely untrusted
storage servers. The complete distrust of storage de-
vices requires these systems to take expensive and
extreme measures such as Byzantine agreement in
order to provide some degree of confidence in an un-
reliable environment. In contrast, GEMS assumes
some degree of cooperation between users and does
not guard against malice.

If a system is willing to sacrifice some of the
filesystem interface, it can achieve greater avail-
ability and fault tolerance by providing a more
database-like functionality. For example, a fully
peer-to-peer file sharing service such as Gnutella [16]
only provides the ability to store and fetch files.
Even more database-like is a distributed hash table
such as Chord [19], which only provides the abil-
ity to map hash keys to storage locations. GEMS
provides much of the lookup capability of these sys-
tems, but retains a filesystem interface to local data.

As we move toward the upper left hand corner,
we approach systems that look more like a tradi-
tional database. A search engine such as Google [5]
is essentially a database of individual files. Al-
though Google has an enormous scale, it still rep-

resents a single administrative domain in which
all components work cooperatively. Even closer is
SHORE [6], which combines both structured and
unstructured data into a single hierarchical view.
Due to the complete independence of its storage de-
vices, GEMS cannot provide the fine-grained con-
sistency semantics of a traditional database.

There are four systems similar to GEMS in the
grid computing domain: Giggle, SRB, BioSimGrid,
and Chimera. Each provides varying degrees of in-
dependence and data abstraction. All of these sys-
tems may potentially need to deal with issues of
gluttony and generosity.

Giggle [8] is a replication location service that
indexes existing storage archives and allows users
to locate the nearest copy of a known data item.
SRB [3] brings both filesystems and databases to-
gether into a federated system that allows for uni-
form indexing and access of multiple data sources.
GEMS builds upon the concepts of Giggle and SRB
by making each index itself partially responsible for
replication and management decisions. The user de-
cides what steady state is to be maintained, and
then delegates that job to the database server.

BioSimGrid [21] and Chimera [10] are systems
for indexing and sharing experimental data between
multiple researchers. Chimera in particular allows
a user to define how data may be realized auto-
matically, and then does so upon request. GEMS
builds upon these two systems by allowing the par-
ticipating storage sites complete technical indepen-
dence. In GEMS, each storage site is free to join,
participate, and withdraw from the system within
their own local constraints. Thus, the placement of
newly-generated data within GEMS must be done
with some consideration of the data value and the
owner of the storage space.

A data management system can be built using a
variety of underlying storage elements. GridFTP [2]
provides secure, parallel-stream access to legacy
FTP systems. IBP [13] makes storage accessible
through a malloc-like interface with access control
via capabilities. NeST [4] provides unified access to
grid storage through a variety of protocols. GEMS
could potentially use any of these storage devices as
the underlying fabric. We have employed Chirp [22]
as the basic storage element because it permits fine-
grained data sharing policies as well as direct run-
time access to filesystem fragments.

8

7 Conclusion

The GEMS toolset design meets the needs of re-
searchers working in the computationally exhaus-
tive and data centric field of biomolecular simula-
tion. The suite of programs provides a new method
for users to find, use, and store large data files.
This is accomplished by implementing a novel dis-
tributed data storage model which combines au-
tonomous storage resources, an appropriate meta-
data specification, automatic storage allocation and
replication policies, and an interface for distributed
computation. The prototype implementation has
been shown suitably functional to demonstrate the
model’s potential as a production system.

This paper did not discuss the fundamental de-
sign capabilities of GEMS to catalog and store
data dependencies specific to our target applica-
tion, molecular dynamics and protein conforma-
tions. We also did not thoroughly present the simu-
lation metadata specific to the scientific problem,
which is important for these capabilities, as well
as for comparison with systems such as BioSim-
Grid [21]. An area to investigate in the future is
the interface to the compute grid. We currently use
the shell to spawn computation, but are targeting
Condor [9] and GIPSE [23]. These topics will be
the subject of other papers.

References

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE:
Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Operating

Systems Design and Implementation, Boston, MA,
Dec. 2002.

[2] W. Allcock, A. Chervenak, I. Foster, C. Kessel-
man, and S. Tuecke. Protocols and services for
distributed data-intensive science. In Proceedings

of Advanced Computing and Analysis Techniques

in Physics Research, pages 161–163, 2000.
[3] C. Baru, R. Moore, A. Rajasekar, and M. Wan.

The SDSC storage resource broker. In Proceedings

of CASCON, Toronto, Canada, 1998.
[4] J. Bent, V. Venkataramani, N. LeRoy, A. Roy,

J. Stanley, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
and M. Livny. Flexibility, manageability, and per-
formance in a grid storage appliance. In Proceed-

ings of the Eleventh IEEE Symposium on High Per-

formance Distributed Computing, Edinburgh, Scot-
land, July 2002.

[5] S. Brin and L. Page. The anatomy of a large scale
hypertextual search engine. Computer Networks

and ISDN Systems, 30(1–7):107–117, 1998.
[6] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E.

Hall, M. L. McAuliffe, J. F. Naughton, D. T. Schuh,
M. H. Solomon, C. K. Tan, O. G. Tsatalos, S. J.
White, and M. J. Zwilling. Shoring up persistent
applications. In ACM SIGMOD Management of

Data, June 1994.
[7] P. H. Carns, W. B. Ligon, R. B. Ross, and

R. Thakur. PVFS: A parallel file system for linux
clusters. In Annual Linux Showcase and Confer-

ence, 2000.
[8] A. Chervenak, E. Deelman, I. Foster, L. Guy,

W. Hoschek, A. Iamnitchi, C. Kesselman, P. Kunst,
M. Ripeanu, B, Schwartzkopf, H, Stockinger,
K. Stockinger, and B. Tierney. Giggle: A frame-
work for constructing scalable replica location ser-
vices. In Supercomputing, November 2002.

[9] D. Epema, M. Livny, R. van Dantzig, X. Evers,
and J. Pruyne. A worldwide flock of condors: Load
sharing among workstation clusters. Future Gen-

eration Computer Systems, 12:53–65, 1996.
[10] I. Foster, J. Voeckler, M. Wilde, and Y. Zhou.

Chimera: A virtual data system for represent-
ing, querying, and automating data derivation. In
Proceedings of the 14th Conference on Scientific

and Statistical Database Management, Edinburgh,
Scotland, July 2002.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed file system.
ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[12] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen,
D. Geels, R. Gummadi, S. Rhea, W. Weimer,
C. Wells, H. Weatherspoon, and B. Zhao.
OceanStore: An Architecture for Global-Scale Per-
sistent Storage. In Architectural Support for Pro-

gramming Languages and Operating Systems, 2000.
[13] J. Plank, M. Beck, W. Elwasif, T. Moore,

M. Swany, and R. Wolski. The Internet Backplane
Protocol: Storage in the network. In Proceedings

of the Network Storage Symposium, 1999.
[14] The PostgreSQL Global Development

Group. PostGreSQL Documentation.
http://www.postgresql.org/docs/ .

[15] R. Raman, M. Livny, and M. Solomon. Match-
making: Distributed resource management for high
throughput computing. In Proceedings of the Sev-

enth IEEE International Symposium on High Per-

formance Distributed Computing, July 1998.
[16] M. Ripeanu. Peer-to-peer architecture case study:

Gnutella network. In International Conference on

Peer-to-peer Computing, August 2001.
[17] A. Rowstron and P. Druschel. Storage manage-

ment and caching in PAST, a large-scale, persis-
tent, peer-to-peer storage utility. In Symposium on

Operating Systems Principles, October 2001.

9

[18] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon. Design and implementation of
the Sun network filesystem. In Proceedings of

the USENIX Summer Technical Conference, pages
119–130, 1985.

[19] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashock,
and H. Balakrishman. Chord: A scalable peer-to-
peer lookup protocol for internet applications. In
ACM SIGCOMM, pages 149–160, August 2001.

[20] C. F. Systems. Lustre: A scalable, high perfor-
mance file system. White paper, November 2002.

[21] K. Tai, S. Murdock, B. Wu, M. H. Ng, S. Johnston,
H. Fangohr, S. J. Cox, P. Jeffreys, J. W. Essex, and
M. S. P. Sansom. BioSimGrid: Towards a world-
wide repository for biomolecular simulations. Or-

ganic Biomolecular Chemistry, 2:3219–3221, 2004.
[22] D. Thain. Chirp: An architecture for cooperative

storage. Technical Report 2005-02, University of
Notre Dame, Computer Science and Engineering
Department, February 2005.

[23] J. M. Wozniak, A. Striegel, D. Salyers, and J. A.
Izaguirre. GIPSE: Streamlining the management
of simulation on the grid. In Proceedings of the

38th Annual Simulation Symposium. IEEE Com-
puter Society, 2005.

10

